
Kinaema: A recurrent sequence model

for memory and pose in motion
https://europe.naverlabs.com/kinaema

Experimental results
All models trained with randomized sequence lengths between T=50 and T=100

Evaluated in significant out-of-distribution settings

Introduction
Key aspect of spatially aware robots is the ability 

to situate themselves in previously seen spaces

Kinaema is a new memory model that can

→ integrate a stream of visual observations while 

moving in a potentially large scene,

→predict relative pose of query images with 

respect to any memory location.

Design objectives

Goal 1: Fast, robotics friendly – O(1) updates!

Goal 2: Scale memory – without affecting network 

    capacity, in contrast to GRU, Mamba etc.

Goal 3: Stability – integrate gating functions into

    recurrent transformer updates

is hiring !

We have permanent and internship positions open. 

Consider applying if you are interested in Robotics, 

CV, ML and NLP. 

Join us and work at the gateway to the French Alps ! https://careers.werecruit.io/en/naver-labs-europe

Kinaema model
Recurrent transformer model maintaining a latent memory of an observed scene Task: Mem-RPE

Relative pose estimation of query 

image given an image sequence 

or memory

Task: Mem-Nav
Downstream navigation task, where an 

ImageGoal agent navigates to a target 

place potentially observed before
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Transformer contextualizes visual observation with existing 

memory and generates candidate memory updates

Can you please 

guide me to this 

coffee machine?

GRU

Transformer

✓  High memory capacity

✓  Long context length

✓  O(1) for each step

✗ Limited memory capacity

=  Potentially long context

✓  O(1) for each step
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Memory in motion
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✓  High memory capacity

✗ Limited context length

✗ O(N2) for each step
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Mem-RPE – Pose estimation accuracy

Mem-Nav – Navigation efficiency (SPL)
GRU and Kinaema are integrated into the baseline DEBiT agent, 

with (■) and without (⊟) priming sequence.

Kinaema is particularly useful to solve hard nav episodes, where 

start → goal distance > 15m

Cross Attention
Between query image and memory

Occupancy probing
Probing network can infer 

scene structures from 

Mem-RPE pre-training
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